

Energy and Resources Group

Fuel Cells Today and For Tomorrow:

Stationary and Mobile Applications and Synergies

December 12, 2002

EETD/DER Seminar EO Lawrence Berkeley Lab Berkeley, CA

Dr. Timothy Lipman
With:
Ms. Jennifer Edwards
Prof. Daniel Kammen

Talk Outline

- Fuel Cell Operating Principle (PEM Example)
- Status of Fuel Cells for Vehicles
- Status of Fuel Cells for Stationary Applications
- Hydrogen Energy Station Analysis (CETEEM)
- Fuel Cell Vehicle-to-Grid (V2G) vs. Stationary FC Power (CETEEM)
- New DER Center on UCB Campus CIDER

Fuel Cell Operation (PEM ex.)

Fuel Cell Operating Principle

In most designs, fuel cell plate and cell assemblies are stacked to produce a high voltage system of many cells connected in series

Fuel Cell Types

	PEFC	AFC	PAFC	MCFC	ITSOFC	TSOFC
Electrolyte	Ion Exchange Membranes	Mobilized or Immobilized Potassium Hydroxide	Immobilized Liquid Phosphoric Acid	Immobilized Liquid Molten Carbonate	Ceramic	Ceramic
Operating Temperature	80°C	65°C - 220°C	205°C	650°	600-800°C	800-1000°C
Charge Carrier	$\mathrm{H}^{\scriptscriptstyle{+}}$	OH.	$\mathrm{H}^{\scriptscriptstyle +}$	CO3	O ⁻	0-
External Reformer for CH ₄ (below)	Yes	Yes	Yes	No	No	No
Prime Cell Components	Carbon-based	Carbon-based	Graphite-based	Stainless- based	Ceramic	Ceramic
Catalyst	Platinum	Platinum	Platinum	Nickel	Perovskites	Perovskites
Product Water Management	Evaporative	Evaporative	Evaporative	Gaseous Product	Gaseous Product	Gaseous Product
Product Heat Management	Process Gas + Independent Cooling Medium	Process Gas + Electrolyte Calculation	Process Gas + Independent Cooling Medium	Internal Reforming + Process Gas	Internal Reforming + Process Gas	Internal Reforming + Process Gas

GHGs for Hydrogen FCVs vs. ICE Vehicles

Source: Bevilacqua-Knight, 2001

M anuf ætur æ	R e ent P r toty pe V chicles	Fuel ClkS ystem	C ommer caliz ati on Timefr ame
BMW		OPHEM APU and	Fu d cell APU intro dution
	-	D dphi SOFC	c a 2006
		APŪ (CH F	
		p o wre d	
D áh ásu	MOV EFC V-K 4I	To yout Dire ct-H ₂	Unknown
		(h y bid)	
D amlerC hry ser	NEC A RIV FC V	Ballar dDirect- H	Limite dintrod wion in
	NEC A RV FCV	Ballar dM e 🕅	2004
	N arium FC V	Ballar dDirect- H	
	Citaro FC B sa	Ballar dDirect- H	
Fiat	Seic e to Elettra H2	N u vra Dir cet- H	Unknown
	FC V		
Ford	Th!n kocukCV	Ballar dDirect- H	Limite dintr o d tion in
	P2 0 0 BCV	Ballar dDirect- H	2004
G e nrel M dors	H y do G eIn O pl	GM Sta c 12000	A v ila bility in 2 0 0 5,
	Za fra FCV	GM Sta c 12000	volume pod ution i n
	C hevy S-1 0FC V	C HF	2008 - 2 0 1 0g, o hto b efirst
			compantyo sell 1 million FCVs
Honda	FC X-V 3FCV	Ballar dDirect- H	Introdution in 2003
нопаа	FC X-V 3FC V	Ballar aDirect- H	less talm a few hundre d
			dire c t-H ₂ FCV s
Hyunila	Sa nta Fe FC V	IFC Dire d-H ₂	Unknown
Maz d a	Prema c FC-EV	Ballar dM e D I	Particip ation in pograms
Maz u a	Tichia CyrC-Ev	Danai divi e di	with Ford Moto rGroup
			and Thnk
Mitsubis h	MFC V Concep	Mitsubis li Me O H	Working instruction Mitsubshi
11113401311	V e hele	minute is in the con-	HeavIn dutrie sto
			d e vlep c ommercial FCV
			by 2005
Nissa n	R'n ess aSU V	Ballar dM e OH	Limite dintr o d wion in
	Xterra SU V	Ballar dM e OH	2003 or 2004, invgork
			with Re n altito d e vlep
			commercial FC te chilogy
			by 2005
Pe u g et 6			Working inth Renaltu
Citro e n			
Ren a lt	FE VER FC V	Dire t-H ₂	Working in the Peugeto
			Citro e nand Niss a nto
			d e vlop c ommercially
			via the FCV by 2010
To yout	FC H V4 FCV	To yout Dire ct-H ₂	Limite dintr o d wion in
	FC H V5 FCV	To yout CHF	2003, e x ptefull
	FC H VB US 1	(h y bid)	c ommercialization ca.

Fuel Cell Progress

• Power density has increased dramatically in the last decade, e.g. for PEMFC: Ballard technology (figure below) and GM with Stack 2000 (1.75 kW/liter!)

Early 1990s Daimler Prototype FCVs

DaimlerChrysler NECAR IV Prototype

The gasoline processor and other auxiliary components take up about half of the cargo space in General Motors' new S-10 fuel cell pickup truck, the first vehicle shown publicly with a processor that extracts hydrogen from gasoline. The truck is 40% efficient (overall system); more than twice that of an IC vehicle.

Toyota RAV-4 FCV Prototype

- But Not Just Light-Duty Vehicles
- Lots of Activity Around Fuel Cell Buses
- Fuel Cell APUs for Heavy-Duty Trucks
 - UCD/Ballard/Freightliner Demo
- Marine Applications

Key Issues

- Not just stacks, but systems!
 - Balance of plant/auxiliary system development and refinement
 - WTM, optimized air compressors, startup issues, etc
- Refueling infrastructure for hydrogen
- Cost, cost, cost (FC system target of \$40-50/kW!)
- Durability, durability (~4,000 hours)

- Why Stationary Fuel Cells?
 - Cleaner and more efficient than most DG options
 - Quiet operation
 - Some types offer high-grade waste-heat
 - Highly reliability/availability(?)
 - Modularity should lend itself to cost reduction (many repeat components)

- Key Industry Players
 - PAFC: United Technologies (formerly IFC)
 - ~200 200-kW units sold, mostly in U.S. and many under DoD buydown program (~\$4K/kW \$1K/kW)
 - PEM: Ballard, United Technologies, Plug Power
 - Intense activity and lots of players, new Ballard/Coleman 1.2 kW unit (about \$6K/kW)
 - SOFC: Siemens Westinghouse
 - Years of development but still problems with cell to module scale-up? (seals and materials)
 - MCFC: Fuel Cell Energy
 - Commercial product, 60 MW in orders for 2003

Technology Provider	FC Type	Deployment Time Frame by Not System Power and (Fuel Type)			Primary Application	
Technology Provider		6 months	12 months	18 to 24 months	Primary Application	
H2 ECOnomy	PEMFC	0.05 kW (H2)	1 kW (H2)	1 kW (H2)	Portable Elect. / Light Residential	
Ballard Power Systems	PEMFC	1.2 kW (H2)	1.2 kW (H2)	10 kW (NG) 60 kW (H2)	Portable for OEM Products Residential / Light Commercial	
IdaTech, LLC	PEMFC	1 kW (M100) 3 kW (M100)	1 kW (M100) 3 kW (M100)	1 kW (M100) 3 kW (M100)	Portable / Residential / Light Commercial	
Anuvu Inc.	PEMFC	1 to 5 kW (H2)	1 to 5 kW (H2)	1 to 5 kW (H2)	Remote Off-Grid	
Plugpower, Inc.	PEMFC	5 kW (NG)	5 kW (NG,H2)	50 kW (H2)	Residential / Light Commercial	
Nuvers Fusi Cells	PEMFC	5 kW (NG, LPG)	5 kW (NG, LPG)	5 kW (NG, LPG)	Telecomm / Datacomm	
DCH Technology, Inc	PEMFC	1,3,5,10 kW (NG,H2)	20 kW (NG, H2)	40 kW (NG, H2)	Residential / Light Commercial	
UTC Fuel Cells	PAFC PEMFC	200 kW (NG, LPG) Unclear Timing	200 kW (NG, LPG) Unclear Timing	200 kW (NG, ADG) 150-200 kW (NG)	Residential / Light Commercial Commercial CHP	
Energy Alternatives (Systems Integrator)	SOFC	No Demo Product	5 kW (LPG)	5 kW (LPG) 250 kW (NG)	Remote Off-Grid Commercial CHP	
Siemens Westinghouse	SOFC	No Demo Product	Unclear Timing	250 kW (NG)	Commercial CHP, Small-Scale DG	
Shell Hydrogen / Siemens Westinghouse	SOFC	No Demo Product	No Demo Product	250 kW CO 2 sequestering (NG, LSD,MD, LPG)	Commercial CHP, Small-Scale DG	
FuelCell Energy, Inc.	MCFC	Unclear Product Availability (sold out / order back log)	250 kW (NG, ADG) 1 MW (NG, ADG)	250 kW (NG, ADG, LPG) 1 MW (NG, ADG, LPG) 2 MW (NG, ADG, LPG)	Industrial Co-Gen and Medium- to Large-Scale DG	

Source: CaSFCC

Plug Power Residential PEMFC Prototype

- Key Issues
 - Integration with Utility Grids
 - Reasonable Standby/Exit Fees
 - Durability, durability, durability (~40,000 hours)
 - Cost, cost, cost (FC system target of ~\$700-800/kW)

Energy and Resources Group

Economic Analysis of Hydrogen Energy Station Concepts:

Are "H2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?

October 30, 2002

Prepared for: BP and DaimlerChrysler

Dr. Timothy E. Lipman Ms. Jennifer L. Edwards Prof. Daniel M. Kammen

H2E-Stations vs. H2 Stations

H2E-Stations vs. H2 Stations

MATLAB/Simulink Model

MATLAB/Simulink Model

Large CA Residential Loads

Medium-Sized CA Office Building Loads

H2-E Station Analysis

H2-E Station Analysis

Costs and Revenues Included in the Analysis	Costs and Revenues Not Included in the Analysis		
Fuel cell system capital costs	Equipment installation costs		
Natural gas reformer capital costs	Safety equipment costs		
• Capital costs for FCV refueling equipment, including H ₂ compressor, H ₂	Costs of any required construction permits or regulatory permits		
storage, and H ₂ dispensing pump • Natural gas fuel costs for electricity and	 Costs associated with any property that is devoted to FCV refueling Utility "standby charges" for providing backup for electricity self-generation Costs of any labor associated with energy station operation or administration 		
hydrogen productionFuel cell system annual maintenance			
and periodic stack refurbishmentReformer maintenance			
Purchased electricity, including fixed monthly charges, energy charges, and demand charges	 Federal, state, and local taxes on corporate income, including tax credits for equipment depreciation, etc. 		
• Revenues from hydrogen sales to FCVs	Revenues from government incentives		
• Avoided electricity costs due to self- generation	for fuel cell installation/operation or hydrogen dispensing		
• Avoided natural gas costs due to cogeneration of hot water with fuel cell system waste heat			

H2-E Station Analysis

- Two Settings:
 - Service Station w/25kw and 40 kW fuel cells and 5-75 vehicles/day
 - Office Building w/50-250 kW fuel cells and 10 vehicles/day
- Various economic assumptions, but future FC costs (on the order of \$500-1,000/kW)

Sample Results: H2-E Service Station w/40 kW fuel cell

Sample Results: H2-E Service Station w/40 kW fuel cell and "future high" cost

Sample Results: H2-E Service Station vs. H2 Service Station Designs

Sample Results: H2-E Office Building

H2E-Station Findings

- The economics of supporting small numbers of FCVs, on the order of 5-15 per day, are difficult and only under the most favorable circumstances can fueling stations break even or turn a small profit.
- However, the losses associated with supporting early FCVs with hydrogen fueling can potentially be reduced by employing H₂E-Station designs.
- The economics of "office building" H₂E-Stations appear favorable relative to "service station" H₂E-Stations, once fuel cell and H₂ equipment becomes mass produced and less expensive, and where the economics of producing electricity and displacing grid purchases are favorable.

H2E-Station Findings (cont'd)

- In cases where 50 to 75 FCVs per day are supported in service station H₂E-Station designs with a 40 kW fuel cell and "future high" cost estimates, a 10% ROI target can be achieved but only with hydrogen sold at or near \$20 per GJ.
- With lower natural gas prices than \$6/GJ, the prospects for economic sales of hydrogen at closer to \$15/GJ would brighten.

Huge Potential Resource

- Total shaft power of motor vehicles is ~14 times the electricity generating capacity of U.S.
- Vehicles are only in use for about 1 hour per day on average
- 13,140 GWh per year (~1.5 GW on average) per 100,000 FCVs, assuming 30 kW per vehicle and 50% vehicle availability

Residential Setting

- Single hybrid or non-hybrid vehicle with small, offboard natural gas SMR or ATR unit
- 6 PM to 8 AM availability, 300 days/year
- Local load (avg. 1.2 kW) plus net-metering scenarios
- Natural gas @ \$4, \$6, and \$10 per MBTU
- Electricity prices of \$0.10-0.15/kWh, plus TOU rates

- Commercial Setting -- Office Building
 - Up to 10 FCVs with a larger industrial grade SMR unit
 - 8 AM to 6 PM availability, 250 days per year
 - Building load from ~30 to ~300 kW
 - \$7-12/kW demand charge and \$0.05-0.08/kWh electricity, plus TOU rates
 - Natural gas @ \$3, \$4, and \$6 per MBTU

Office Building Results

Residential Building Results

FCV-to-Grid Findings

- FCVs are Promising as DG Resources, but Several Important Issues Must be Resolved
- Use in Residential Settings Will Benefits From Net Metering or Community-Based System
- Use in Commercial Settings is Attractive Due to Potential for Demand Reduction, Use During Period of Grid Peak (3-6pm), and Access to Lower Cost Natural Gas
- Research is Ongoing to Further Understand Key Sensitivities and Optimal Settings/Strategies

New UCB DER Center: CIDER

• CIDER Plan:

- Initial Launch in November 2002, Full Operations by June 2003
- Five main areas:
 - 1) the economics of DER/CHP technologies
 - 2) the air pollutant and GHG emissions impacts of DER/CHP technologies
 - 3) renewable DG systems based on wind turbines, solar photovoltaics (PV), biomass, small hydro, and tidal power (RAEL, http://socrates.berkeley.edu/~rael);
 - 4) electricity demand-response technologies/economics
 - 5) hydrogen as a fuel/energy carrier for DER technologies
- Office at 2105 Bancroft Way, Suite 300